

International Workshop Science Education in Schools

Stephen M. Pompea

National Optical Astronomy Observatory Tucson, Arizona USA

Informal Education Learning Activities

- Voluntary and self-directed, life-long, motivated mainly by intrinsic interests, curiosity, exploration, manipulation, fantasy, task completion, and social interaction.
- Informal learning occurs in an out-of-school setting and can be linear or non-linear
- Often self-paced and visual- or object-oriented.
- Provides an experiential base and motivation for further activity and learning.

Project Funding

- National Science Foundation, Division of Informal Science Education, P.I. Anthony Johnson
- Program Officer: Dr. Sylvia James
- Support from SPIE, OSA, NOAO

Knowledge and Wonder

... for all knowledge and wonder (which is the seed of knowledge) is an impression of pleasure in itself ...

-Francis Bacon

The National Science Foundation

Project History

- 2001 National Science Foundation Planning Grant to Optical Society of America, SPIE-The International Society for Optical Engineering
- Result: Optics Education: A Blueprint for the 21st Century
- Recognition that professional societies have obligations/expertise to K-12 as well as to membership-oriented focus.
- Optics as a "stealth" field, contributing to many others
- Ubiquity of optics in everyday life in contrast to noticeable absence of optics in K-12 and informal education
- 22 recommendations, interventional strategies
- Importance of strategic partnerships

Role of Optics Resource Volunteers

- Each society has over 15,000 professional members.
- Over 2000 are conducting educational activities
- Train and utilize this volunteer force for optics education
- Need to utilize other mentors (undergraduates, graduate students, technicians, other practitioners)

Results of Planning Grant: Focus on Middle School Age, Informal Setting, Broad Audience

The National Science Foundation

Organization of Current HOO Program

OSA – The Optical Society of America Project Principal Investigator Anthony Johnson

SPIE – The International Society for Optical Engineering Project Co-PI Eugene Arthurs

NOAO – The National Optical Astronomy Observatory Project Co-PI and Project Director Stephen Pompea

--3-year program in year 4 no-cost extension All money committed by August 31, 2007

Our Approach:

- Experimentation
- Inquiry-oriented
- Build sense of ownership
- Create prolonged engagement
- "Fun and exciting"
- Career awareness

NOA

Professional Development Program is Essential

Strong (but flexible) professional development for educators and optics resource volunteers

Intersection of Hands-On Optics Functions

Educator/ORV Professional Development

Instructional Materials Development Informal Program Development

Builds on Understanding of Children and their View of the Nature of Light

- Light is a source, may be an effect, but is not an entity (Guesne)
- Light paths and rays not well understood (Ramadas and Driver)
- Focus on seeing as the active process (not light reflecting from objects)
- Basic misunderstanding of shadows and even where they appear.
- Poor understanding of images and their location (Goldberg and McDermott)
- Poor understanding of how filters work and of colors. (Zylbersztajn and Watts) What is "black"?
- Reflections must be specular (Anderson and Smith)

HOO Modules: Builds on Existing Materials and Workshops: e.g., *Invisible Universe* Teacher's Guide and workshops at the National Science Teacher's Association, numerous SPIE and OSA efforts

Project Goals

- Create links from the professional optics community to the informal science education community
- Reach underrepresented middle school cohorts in science and technology and connect with their parents, teachers, school districts and communities
- Provide opportunities for the target populations to succeed in collaborative learning and problem solving through inquiry-based, hands-on applications of optical and engineering skill and knowledge
- Increase science and technology knowledge for students and increase awareness of optics as a discipline and career that cross-cuts numerous fields

Goals and Plan

- 1. Target underserved middle-school aged audience
- 2. Use a volunteer network as mentors "Resource Agents"
- 3. Team volunteers with MESA teachers
- 4. Develop 6 modules with optics parts
- 5. Design professional development course for educators and volunteers
- 6. Develop a resource book for the volunteers to work in an educational hands-on environment.
- 7. Provide program for career awareness and capstone events

Primary Audiences for Hands-On Optics

1. MESA programs: Arizona, Colorado, California, Maryland, New Mexico, Oregon, Washington

2. Science Centers: Adventure Science Center, California Science Center, Chabot Science Center, Flandrau Science Center, Imiloa Astronomy Center of Hawaii, New York Hall of Science, Orlando Science Center

Selection Criteria for Science Centers

- Reach an underserved audience
- Interest in long-term physical science education
- Integration with current programs
- Number of kids reached/hours per kid
- Presence of volunteer community
- Long-term commitment of staff/management

What the project provides:

- HOO kits, curricula, advice (e.g.,camp plans)
- Professional development for staff
- Materials for informational programs and festivals

What we need from our partners:

- A specific plan for use of HOO materials
- A coordinated plan for staff professional development
- Metrics on usage, formative feedback

The National Science Foundation

Report from Orlando Science Center

		<u> </u>	
These are the numbers for September 10, 2006 through			
January 12, 2007			
Program Type	# of Classes	# of Students	Total
Elementary Discovery Labs using HOO	3	30	90.00
21st Century Elementary Outreach	9	26	234.00
NEW Middle and High School Focused Experience			
(Microscopy and Telescopes)	1	35	35.00
Middle School Optics Outreach	2	30	60.00
DDL Weekends using optics at 1 or more stations	32	150	4800.00
DDL Weekdays using optics at 1 or more stations	5	150	750.00
Science Live Shows using HOO for guests	10	150	1500.00
Optics cart demos	10	150	1500.00
Darden Theater Shows (Chem and Physics shows)	5	242	1210.00
Grand Total			10179.00

HOO Modules

- Playful, Exploratory
- Appeal to "Non-Science" Student
- Challenge-Oriented
- Balance of Low/High Tech
- Tied to US National Science Education Process and Content Standards, Mathematics Standards, and Technology Education Standards

Module Summary

Module	Concept	ept Key Activities	
1. Laser Challenges	reflection off of a plane mirror	"Hit the Target"	
2. Kaleidoscope Adventures	multiple reflections	"Kaleidoscopes and Periscopes"	
3. Magnificent Magnifications	image formation	"Building a Telescope"	
4. Peculiar Polarizations	polarization and color	"Testing for Stress"	
5. Ultraviolet and Infrared Light	EM spectrum, fluorescence and infrared	"Glowing Things"	
6. Communicating on a Beam of Light	information transmission	Laser Communication of Sound	

Activities in One Module

Contents **Overview of Module 1: Laser Challenges** Introduction to Lasers Summary of Module 1 Activities Learning Goals, Standards, and Assessment Materials: Master List Laser Safety **Bouncing Ball (Demonstration)** Mirror, Mirror on the Wall (Demonstration) **Milky Water Demonstrations Measuring Angles**

5

6

7

9

14

15

16

19

21

24

Module One-continued

STUDENT HANDOUT: Using Your Protractor	26
STUDENT HANDOUT: Angles and Rays	
(2 pages)	27
STUDENT HANDOUT: Measuring Reflections	
(2 pages)	29
Reflection from Smooth and Rough Surfaces: A	
Demonstration	31
Mirror Station Activities	34
Mirror Station Activities Sign	37
Mirror Station Instruction Sheets(5 pages)	38
STUDENT HANDOUT: Mirror Stations (2 pages) 4	43
Hit the Target	45

Continued

STUDENT HANDOUT: Hit the Target	47
Hit the Target Scorecard	48
Targets for the Hit the Target Activity (2 pages)	49
Master of Reflections Certificate	51
Mission Impossible	52
Focal Point of a Curved Mirror Demonstration	53
More Background for the Interested Educator	55
Common Misconceptions About Light	59
Glossary	62
Reproducible Materials	63
Protractor Templates (3 pages)	63

Sample Items in Kits

HOO Challenges: Module 6 Laser Communication The Old Way...

Clear modulated laser: \$475

Laser communication receiver kit: \$139

Grand Total:

\$614

Hands-On Optics Making an Impact with Light An educational collaboration of SPIE, OSA, NOAO

Our Kit < \$100

The Receiver

MESA Competition 2007 (prolonged engagement)

- 4th Year, Took place April, 2007 in Tucson
- Changed to a version of "Hit the target"
- Teams received kits to practice
- 37 teams signed up
- 4th year

Some New Audiences: Boys and Girls Clubs

South Tucson and Sells Boys and Girls Clubs

Boys and Girls Club in Sells (Tohono O'odham Nation)

- 1.5 hours every other week
- At least 15 children per session
- Ages mostly between 7-12 years old
- Program was very well received
- Of 3 dozen kids on the last day

— 90% of the kids had consistently participated in HOO

— 90% wanted the program to continue

Special optics event at Pisinemo (with Tohono O'odham summer day camp)

Boys and Girls Club South Tucson (Hispanic Community)

- Two 1.5 hour sessions twice week
- 73 children participated; an average of 22 students each day.
- An equal number of boys and girls
- Twice as many 7-10 year olds as 11-14 year olds
- As a capstone, 18 children with the highest attendance record traveled to Kitt Peak National Observatory for the Nightly Observing Program.

HOO Outcomes/Project Performance

High throughput/high contrast optical/educational system

or

Low throughput/high contrast optical/educational system

Optics Resource Volunteer • Volunteer この内中ででの中ですか。 but who is an expert?

- 180+ volunteers trained in 11 states, more being trained at each site
- Pairing teacher/ORV not always successful, but many success stories
- 2,100 volunteer hours recorded to date (January!)

• Project goal of 3,200 hours will be met

Program Evolution: Astronomy from the Ground Up (AFGU)

- Created Module 3 mini-kits for AFGU-Used by OSA, SPIE
- Not a classroom set of materials but an introduction to one module
- Expect to reach 100 small science center and nature center educators per year with abbreviated professional development program
- One site has become a full HOO site
- Many have done large special optics events

Program Evolution: Timothy Smith Network of Community Centers (Roxbury, Massachusetts)

- 24 Participants from 20 Community Centers
- Ideal venue for informal program
- First professional development workshop held Nov. 2006, revisit this month

This makes 25 HOO workshops (2-day each)

The National Science Foundation

Hands-On Optics in the Future

- OSA and SPIE–workshops planned
- Support for current HOO sites
- Widespread kit dissemination through Learning Technologies Inc.
- NOAO-Science Foundation Arizona grant
- NOAO-Adaptive optics kit development through NSF Giant Segmented Mirror Telescope Project

HOO is now a core NOAO project

Final Thoughts

- Demand for high-quality materials, training
- Use of undergraduates very valuable in the program
- Flexibility with science centers
- Importance of solid professional development
- Optics Resource Volunteers have been valuable
- Expansion

