Workshop on high school physics (12 - 18 July 2010), Cheia, Romania

INFLPR

2D and 3D Geometries produced by Ultrashort Laser Pulses

Marian Zamfirescu

INFLPR, Bucharest, Romania

http://ssll.inflpr.ro

Lasers with high power and ultrashort pulse duration

Applications of femtosecond lasers

Low pulse energy (nJ)

- Dynamics of chemical reactions;
- High resolution laser scanning microscopy.

Medium pulse energy (mJ)

 laser microprocessing: laser ablation or photo-induced chemical reactions (material modification by nonlinear absorption);

- generation of THz radiation.

Ultra intense laser beams (J)

- accelerated electron, X-Rays (TW lasers);
- protons beams, accelerated ions, Gamma rays (PW lasers

Microprocessing techniques with ultrashort lasers pulses

- Laser ablation with sub-micrometer resolution
- Two-Photon Photopolymerization (TPP)
- Near-field laser lithography
- Laser Induced Forward Transfer (LIFT)
- Two-Photons Excited Spectroscopy (TPE)

Interaction of materials with intense laser beam

• Focused laser beam create free electrons in the irradiated material.

 $hv = E_g$ - linear absorption $N \ge hv = E_g$ - nonlinear absorption

• The free electrons interact with the crystal lattice heating the irradiated area.

• At laser pulses longer than the thermal diffusion time a large area is heated around the irradiated spot.

• When the temperature of the material reaches the vaporization temperature, the material is locally removed from the target by vaporization.

A crated is formed. The adjacent area is thermally affected resulting cracks and debris.

Interaction of materials with intense laser beam

Nanosecond versus femtosecond laser processing

Long pulses: The heat affected zone is much larger than the laser irradiated area.

Short pulses: nonlinear absorption in the center of a focalized beam induces material modification at submicrometer size => micro and nanostructuring

How to overcome the diffraction limit by a femtosecond laser?

Femtosecond laser beam easily induces nonlinear absorption in the center of a focused spot.

Two-photons or multiphotons absorption:

- photochemical reaction (photopolymerization)
- glass densification (waveguide in glasses)
- laser ablation

NIR two-photon vs. UV absorption

Laser spot diameter vs ablated spot

When the laser fluence (intensity) is kept just above the ablation threshold the material will be processed with precision under the diffraction limit.

$$d_0 = \frac{2M^2\lambda}{\pi NA} \approx \frac{\lambda}{NA}$$

 d_0 – minimum diameter of the focused laser beam

NA – numerical aperture

$$d(F) = \frac{d_0}{\sqrt{2}} \sqrt{\ln(F / F_{th})}$$

Laser Direct-Writing (LDW) with femtosecond laser

Opto-mechanical system for micro/nano-structuring

Laser sources

- Clark MXR CPA2101: wavelength 775 nm , pulse duration 200 fs, repetition rate 2KHz ;
- Femtolasers Synergy Pro: 790 nm, 20 fs, 75 MHz .
- Specta Physics Tsunami: 750-850 nm, 80 fs, 80MHz ;

Translation system XYZ

- stepper: 4x4x4 mm³ or 50x50x25 mm³. - precision 400 nm.
- piezo: 20x20x20 μm³

Focusing optics

- 10X to 100X
- NA from 0.2 to 1.4 (immersion oil).

Visualization

- CCD camera 768 x 494 pixels.
- image rezolution < 1 μ m

Microstructures fabricated by femtosecond laser ablation

Laser ablation of alumina target $(100 \ \mu m \ thickness)$

Laser ablation with sub-micrometer resolution

Laser ablated holes on gold film 100 nm. Diameter \sim 830 nm.

Structures on Co/Cu/Co films Grooves width < 500 nm

Laser ablation with sub-micrometer resolution

100 nm gold thin-film deposited on glass. Structures period of 2 μm . Laser wavelength 775 nm, duration 200 fs.

Structures such as interdigital capacitors, electrodes for micro-sensors, etc. can be produced by laser ablation on metallic films, semiconductors, or ceramics usually difficult to be processed by chemical etching.

Interdigital capacitors fabricated by femtosecond laser

Microwave devices fabricated by femtosecond laser ablation

Pass-Band Filter

Directional coupler

Microwave antenna

Direct Laser Writing in photopolymers: 3D micro-lithography

Microstructures produced by TPP in photopolymers

SU-8, ORMOCERs, ORMOSIL, PMMA

Applications :

- Micro-optics components: microlenses, photonic crystals, waveguides, optical couplers;
- OCT calibration samples;
- Biocompatible microstructures;
- Micro-fluidics.
- F. Jipa et al., J. Optoel. Adv. Mat. 2010.

Applications of 3D TPP in Life Sciences

Near-field laser lithography on colloidal nanoparticles

The field enhancement at the interface of a monolayer of colloidal nanoparticles with a solid substrate produces nanoholes by laser ablation.

700 nm diameter Silica spheres deposited on glass substrate with an intermediate 50 nm thick gold layer.

M. Ulmeanu et al., J.Appl.Phys. 2009

Structures obtained by near-field laser ablation

Glass substrate

Laser fluence 6 J/cm²

Laser **532 nm**, 450 ps Spheres dimension: **700 nm** Structure dimension : ~**110 nm** Gold Film - 50 nm

Laser fluence 0.5 J/cm²

Laser **532 nm**, 450 ps Spheres dimension: **3** μ**m** Structure dimension : ~**350 nm**

Parallel processing of photopolymers using colloidal particles

Spheres of polystyrene (1.5 μ m diameter) are deposited of SU-8 thin film.

The monolayer of PS spheres are irradiated by fs laser beam.

Numerical FDTD simulation shows an optical field enhancement with a factor of 9.

TPP occurs in optical near-filed enhancement regime.

Laser Induced Forward Transfer (LIFT)

Semiconductors, polymers, biological tissues can be transferred by laser from a donor substrate to an acceptor substrate. The size of transferred material is at the order of few microns.

Droplets of polymers and lines of semiconductor are transferred by laser.

Two-Photon Excitation Spectroscopy

In the confocal configuration, the DLW workstation is connected through an optical fiber to a spectrometer. A 100 μm optical fiber gives about 5 μm lateral resolution on the sample.

By scanning the sample surface the TPE microscopy image can be recorded.

Set-up for TPE-Spectroscopy

Typical TPE-PL spectra

By scanning the sample in XY, a map of TPE-PL intensity can be recorded.

Reconstructed images of a biological sample at different depths inside the sample.

 $\checkmark\,$ A laser direct writing system was configured for laser processing with femtosecond laser pulses.

✓ The laser set-up is compatible with laser processing and characterisation techniques, such as laser ablation, near-field lithography, LIFT, TPP, TPE Spectroscopy.

 \checkmark The system allows us to obtain 2D and 3D structures with submicrometric precision.

✓ The obtained structures have applications for micro-sensors, microoptics, metamaterials, micro-fluidics, etc.

http://ssll.inflpr.ro/

This work is supported by National Agency of Scientific Research trough the projects: CNCSIS IDEI268, FEMAT, METALASER, FOTOPOL

Thank you for your attention!

Self-organization of mono-layers of colloidal nanoparticles

a) Mono-layers of spheres $F^{12} = 2\pi r_c^2 (\sin \psi_c)^2 1/L$ $50\,\mu m$ $5\,\mu m$

M. Ulmeanu, Colloids and Surf. 2009

Spin coating