Experiences from two European IBSE teacher education projects – ESTABLISH and SAILS

European Science and Technology in Action: Building Links with Industry, Schools and Home

Strategies for Assessment of Inquiry Learning in Science

Dr. Eilish McLoughlin

SAILS (2012-2015) – Coordination Team, WP1 leader ESTABLISH (2010-2014) - Coordinator CASTeL Dublin City University, Ireland- Director


SES, Galati 10/04/14

CASTeL | DCU | SPD

DUBLIN CITY UNIVERSITY

CASTEL undertakes research to inform and enhance teaching and learning of science and mathematics at and across all educational levels (i.e. primary through to postgraduate).

Overview

FP7 ESTABLISH Project (2010-2014)

 to extend the use of inquiry-based science education (IBSE) in second level schools across Europe.

• FP7 SAILS Project (2012-2015)

 to support the assessment of inquiry-based science education (IBSE) in second level schools across Europe.

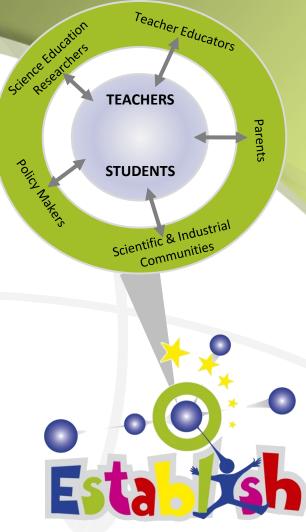
Slide 3

Getting Involved

Background, framework and purpose

- Shift in educational systems within Europe towards the implementation of Inquiry based science education (IBSE).
- Explosion of knowledge and the growing demands of the workplace.
- Skills and competencies that can be used in different situations, not only in science lessons.
- EU Seventh framework programme funded 20+ projects (10-25 partners) in Science for Society Science Education.

Slide 4


ESTABLISH

14 institutions in 11 European countries

- extend the use of inquiry-based science education (IBSE) in second level schools across Europe
- work with teachers to develop and implement IBSE
- engage with stakeholders in STEM education

http://www.establish-fp7.eu/

European Science and Technology in Action: Building Links with Industry, Schools and Home

iniversitäl

Characterisation of Inquiry/IBSE

Inquiry is the "intentional process of

- (1) diagnosing problems,
- (2) critiquing experiments,
- (3) distinguishing alternatives,
- (4) planning investigations,
- (5) researching conjectures,
- (6) searching for information,
- (7) constructing models,
- (8) debating with peers, and
- (9) forming coherent arguments."

(Linn, Davis and Eylon, 2004)

ESTABLISH Units

- 18 Scientific Topics
- Teacher & Classroom Materials
- Physics, Chemistry & Biology
- activities to engage teachers
- applicable for pre-service and inservice teachers
- representative of IBSE
- suggested learning paths for IBSE
- share benefits of IBSE in practice
- inspiration to generate own materials

ESTABLISH IBSE Teaching & Learning Units

Sound Light Designing a Low Energy Home DC Electricity www.establish-fp7.eu

Disability

Blood Donation

Eco-biology

Water in the Life of Man

Renewable Energy Forensic Science Medical Imaging

Appropriate to teachers more experienced with Inquiry based teaching and learning and would like to deepen and extend their experience with additional activities and content. Exploring Holes Chitosan – Fatmagnet? Cosmetics Photochemistry Chemical Care Photosynthesis Polymers around us

Units- Sound, Subunit 1, Inquiry

Through the activities in this subunit students develop basic abilities to do and understand scientific inquiry.

- Asking and answering questions.
- •Planning and conducting simple investigations.
- •Employing tools to gather data.
- •Using data to construct reasonable explanations.
- •Communicating investigations and explanations.
- •Understanding that scientists use different kinds of investigations and tools to develop explanations using evidence and knowledge.

Some activities are ICT activities in which a computer with sound sensor is used to record sound waveforms.

Units- Sound, Subunit 1, concepts & ideas

- Sounds are produced by vibrating objects and vibrating columns of air.
- Pitch and loudness are two characteristics of sound.
- Changing the way an object vibrates can change the pitch or volume of the sound produced
- Pitch is determined by the frequency and loudness by the amplitude of vibrations.
- Sound is produced by human vocal folds as air moves through the tightened folds.
- Sound requires a medium (for example, air, glass, metal, wood) to travel through.
- Speed of sound is less than the speed of light.
- The human ear has a membrane that vibrates when sound reaches it; the ear and the brain translate these vibrations into sensation of sound. Exposure to very loud sounds can cause damage to hearing.

Sound Worksheet – How sound travels?

QUESTIONS

How does sound energy travel from the sound source to you ear?

Do you have a theory that might explain this process?

What evidence do you have for your theory?

INVESTIGATIONS

•Can you explain how the sound from outside gets to your ears?

•Can you hear through walls?

•Knock at one end of a table while your classmate listens with an ear against the other end of the table. Can your classmate hear you knocking? Why?

•If all air in the classroom were replaced with water, could you still hear?

•Units- Sound, Subunit 2

The main IBSE approach in this subunit are guided discovery and open inquiry.

Inquiry based skills developed in this unit are amongst others:

•Performing experiments.

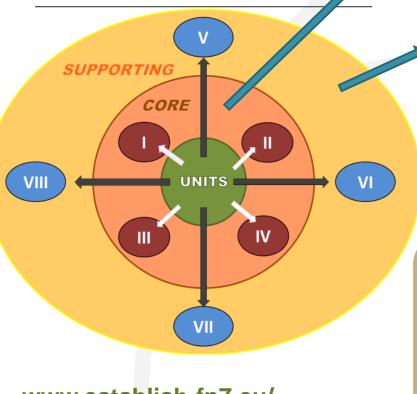
•Analyzing results obtained with experiments (or presented by the teacher).

•Communicating results with the use of graphs.

•Using results from one experiment (double bass) to analyze the results of another experiment (frets of a guitar).

•Using knowledge from one field of acoustics (strings) in another field of acoustics (air columns).

In some activities the computer is used to record sound and to analyse the data.


Teacher Education Workshops

The ESTABLISH project has received funding from the

ESTABLISH Teacher Education Programmes #=2,090

www.establish-fp7.eu/

I	Establish view of IBSE
II	Industrial Content Knowledge
III	Science teacher as Implementer
IV	Science teacher as Developer

V	ICT
VI	Argumentation in the classroom
VII	Research and design projects
VIII	Assessment of IBSE

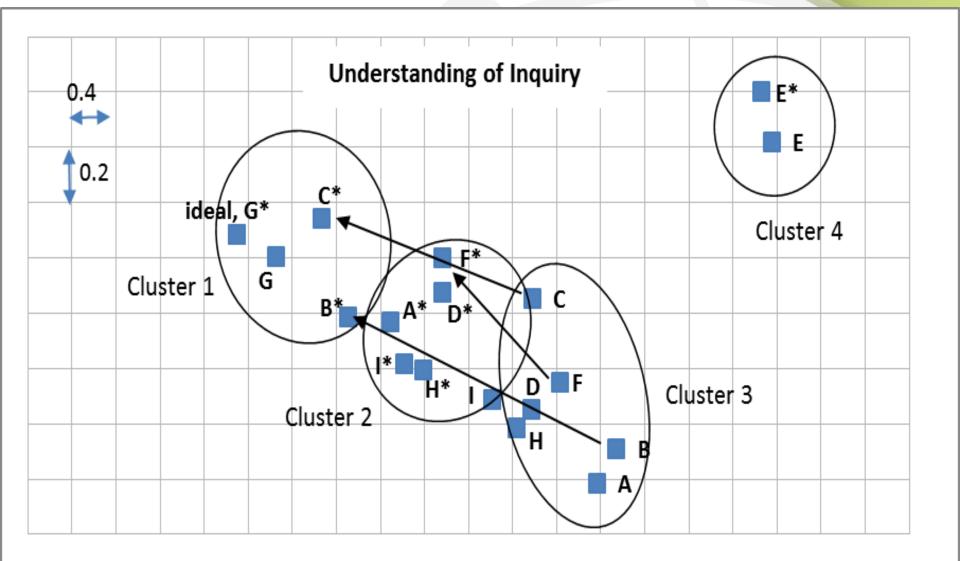
Appropriate to those new to Inquiry based teaching and learning where there is information, suggestions and activities to broaden and develop your inquiry teaching skills.

ESTABLISH Impact on Teachers

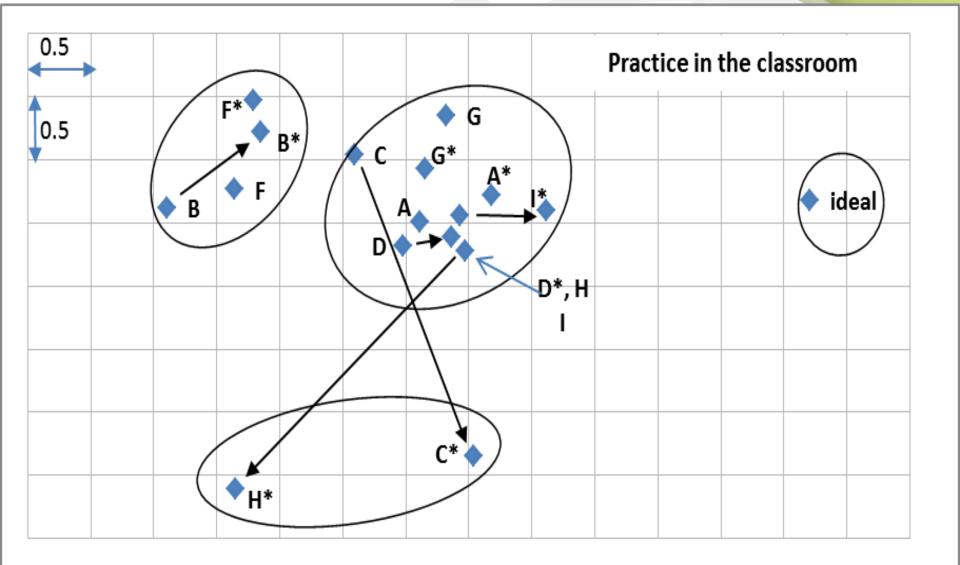
Quantitative Evaluation - Pre and Post TEP

- Understanding of inquiry
- Attitude towards inquiry
- Industrial importance/links
- •Practice in the inquiry classroom
- Personal Skills in relation to inquiry

ESTABLISH - Impact on Teachers


Understanding of inquiry

- I don't fully understand inquiry based science education
- I don't fully understand my role as a teacher in an inquiry classroom
- I don't fully understand the role of the students in an inquiry classroom


Practice in the classroom

- •If a student investigation leads to an unexpected result I always tell the students the right answer/result;
- •I am unsure how to ask students higher order questions that promotes thinking;
- •I have sufficient knowledge of science to implement an inquiry lesson effectively.

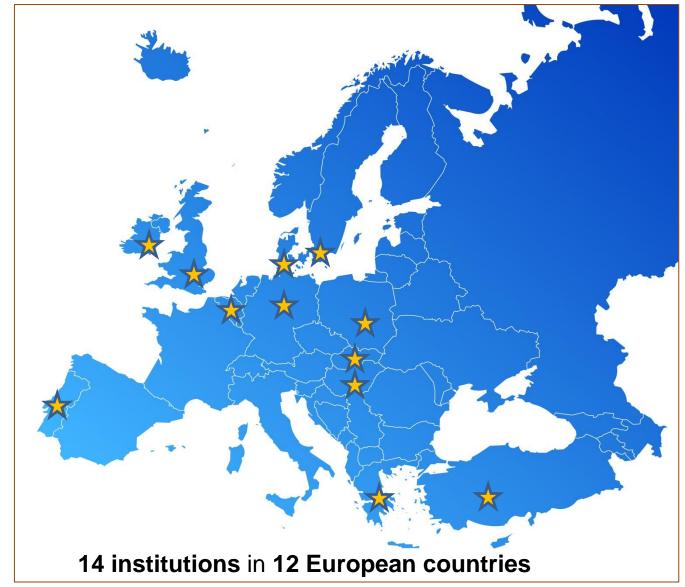
Results - Understanding of inquiry, #=233

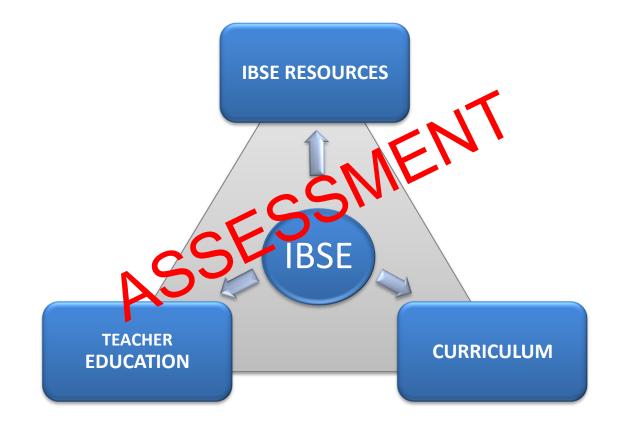
Results – Practice in the classroom, #233

•ESTABLISH – Project Outcomes

- increased use of IBSE methodologies by teachers;
- greater understanding, attitude and ability to use IBSE in their teaching;
- increased student's motivation and communication during science lessons;
- greater student attitude towards science and taking up careers in science or technology;
- increased interaction between those teaching and learning about science and those using science.

SAILS partners





Sustainable model for IBSE

Unified approach of implementing all the necessary components for transforming classroom practice - sustainable model for IBSE.

Inquiry Skills and Competencies

Inquiry is the "intentional process of

- (1) diagnosing problems,
- (2) critiquing experiments,
- (3) distinguishing alternatives,
- (4) planning investigations,
- (5) researching conjectures,
- (6) searching for information,
- (7) constructing models,
- (8) debating with peers, and
- (9) forming coherent arguments."

Curriculum and Assessment – Lower Secondary

	Diagnose problem	Critique experiments	Distinguish alternatives	Plan Investigation	Researching conjectures	Search for information	Construct models	Debate with peers	Form coherent arguments
Belgium									
Denmark									
Germany									
Greece									
Hungary									
Ireland									
Poland									
Portugal									
Slovakia									
Sweden									
Turkey									
UK									

Curriculum and Assessment – Upper Secondary

	Diagnose problem	Critique experiment	Distinguish alternatives	Plan Investigation	Researching conjectures	Search for information	Construct models	Debate with peers	Form coherent arguments
Belgium									
Denmark									
Germany									
Greece									
Hungary									
Ireland									
Poland									
Portugal									
Slovakia									
Sweden									
Turkey									
υк									

The main purposes for assessment

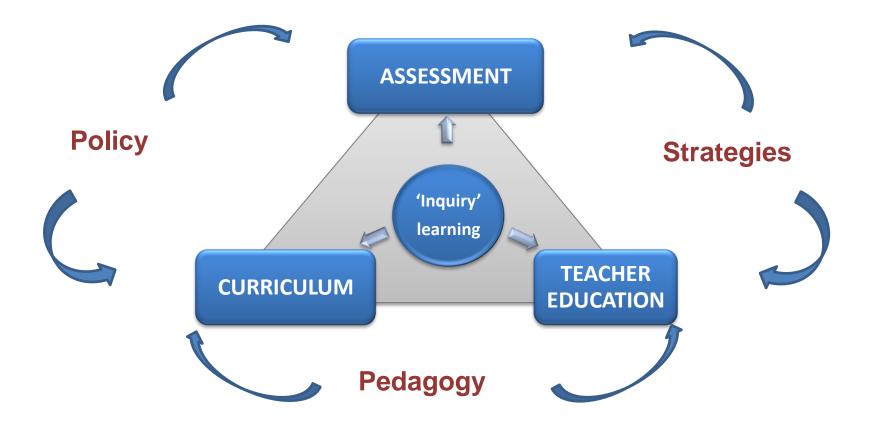
- **Summative assessment:** Assessment of current individual level of knowledge and competence (in order to monitor educational progress and to compare student learning to the standards of performance or to their peers).
- Formative assessment: Assessment to assist learning (trough providing teachers and students with feedback – for the teachers to revise their teaching and for students to monitor their own learning)
- Accountability assessment (evaluation): Assessment to evaluate educational programs (national performance, school performance, etc.) (in order to drive changes in practice and policy)

The terms describe the purposes for which the assessment is done, not the task itself – all assessment tasks can be used summatively as well as formatively!

An assessment research project

Students divided into 4 groups:

- A: got marks for their assignments
- B: got written comments (and no marks) to their assignments
- C: got both marks and comments
- D: got no feedback (control group)
- A: Same improvement as the control group
- B: 30% better than the control group
- C: same as A and control group


(Judith Butler 1988)

Point: Summative assessment does not enhance learning! Time spent on summative assessment and evaluation is taken from time spent on learning.

AIM OF PROJECT

"SAILS aims to prepare teachers not only to be able to teach through IBSE, but also to be confident and competent in the assessment of their students' learning through inquiry."

Enhance existing IBSE teaching and learning materials

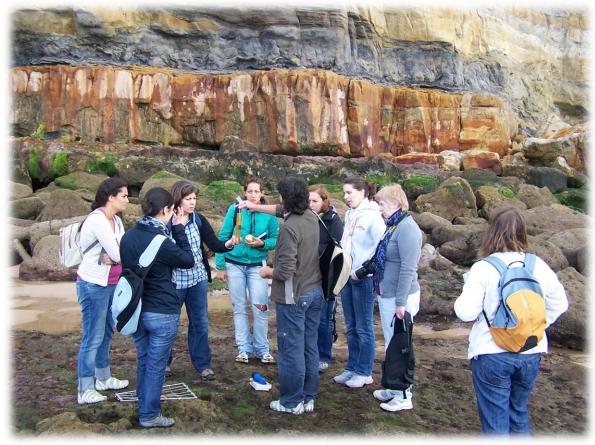
by incorporating inquiry assessment strategies and frameworks

Partner with teachers to identify and implement assessment strategies and frameworks to evaluate key IBSE skills and competences in the classroom

Provide Teacher Education workshops in IBSE and CoP in 12 European countries

Communities of Practice CoPs

Facilities available to International CoP members:


- Discussions:
 - Lists discussions taking place in the CoP
 - Allows users to post comments and add new discussions
- Calendar:
 - Shows planned events in a calendar format
 - Allows users to add an event
- Resources:
 - Contains materials/units/case studies shared by members (e.g. documents, images, videos, web links, etc.)
- Members: CoP members and their contact details

The **SAILS** project has received funding from the European Union's Seventh Framework Programme [**FP7/2007-2013] under grant agreement n°** 289085

Promote the use and dissemination of inquiry approaches to teaching, learning and assessment

with national and international stakeholders.

SAILS Motivation

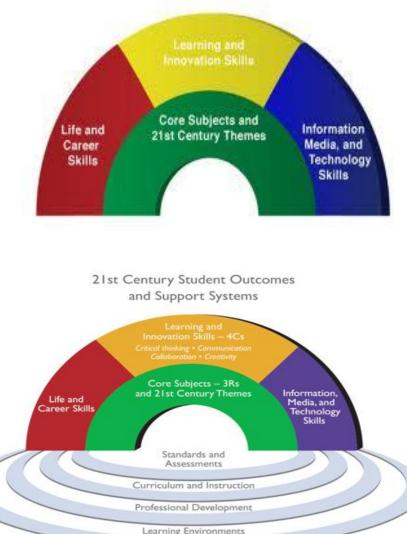
School leavers need to:

- Be prepared for work/future study/life
- Become independent learners
- Have 21st century skills such as described in the next slides

Partnership for 21st Century Skills (2011)

Core Subjects and 21st Century Themes

Learning and Innovation Skills


Creativity and Innovation Critical Thinking and Problem Solving Communication and Collaboration

Information, Media and Technology Skills

Information Literacy Media Literacy ICT Literacy

Life and Career Skills

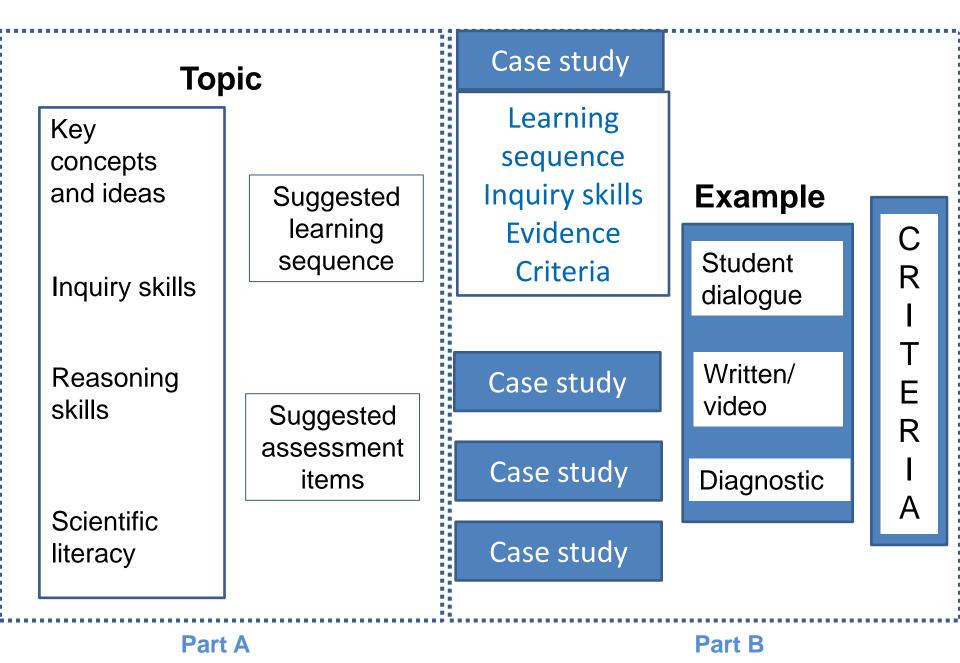
Flexibility and Adaptability Initiative and Self-Direction Social and Cross-Cultural Skills Productivity and Accountability Leadership and Responsibility

Mapping IBSE with 21st Century Skills (1) Creativity and Innovation

Framework for 21st	Teaching science so	In IBSE, students	
Century Learning	students	engage in	
think creatively	question conclusion	diagnosing problems critiquing experiments distinguishing alternatives researching conjectures	
work creatively with others	communication	discussion with peers forming coherent arguments searching for information	
implement	design	planning investigations	
innovations	data	constructing models	

Mapping IBSE with 21st Century Skills (2) Critical Thinking and Problem Solving

Framework for 21st Century Learning	Teaching science so students	In IBSE, students engage in
Reason Effectively	question	diagnosing problems critiquing experiments
Use System Thinking	design	constructing models
Make Judgments and Decisions	predict conclusion	distinguishing alternatives planning investigations
Solve Problems	data	researching conjectures


Mapping IBSE with 21st Century Skills (3) Communication and Collaboration

Framework for 21st Century Learning	Teaching science so students	In IBSE, students engage in		
Communicate Clearly	question design data conclusion communication	distinguishing alternatives		
Collaborate with Others		debating with peers forming coherent arguments		

Topics of SAILS Units

Plant nutrition
Living conditions of wood lice
Tooth decay
Natural selection
Speed
Electricity
UV radiation
Speed of reaction
Galvanic cell
Plastics
Water pollution (impact of detergents)
Which is the best fuel?

SAILS Unit format

Example of a unit: Collision of an egg

Content	Collision of an egg from free fall in case of different
	surfaces
Course	Science, Physics
Level (target age)	for 15-16 yrs. age group
Goals	The identification of effects on the forces during collision, planing an experiment.
Time (lessons)	90min (2)
Equipment,	Materials: one box of eggs per group, flour, water,
materials	semolina, sand, baloon and materials advised by the students
	Equipment: tape measure, digital balance, bucket, deep bowl, stopwatch

Collision of an egg

2. Content

The task is to solve an unstructured problem. The theme of the task is that of mechanics, the connection between force and momentum, with some reference to traffic safety.

3. Inquiry skills:

- Developing a hypothesis
- Planning investigations

Collision of an egg - Supportive questions

- What physical variables effect the forces generated on objects?
- How does the change in momentum effect force?
- What does momentum depend on?
- How can an object's momentum be changed?
- What does impact speed depend on?
- How do you calculate the speed of an object in free fall?
- Which variable can be taken as constant?
- How do you find connections between the variables?
- How does the drop height effect the egg's collision?
- How does the surface effect the collision?
- Why does the egg remain intact in flour and semolina?

Case studies (Teacher Stories)

Case studies will provide a narrative on how teachers:

- have implemented or adapted the learning sequence (differentiation/age level),
- what skills did they assess and how,
- what evidence did they collect on student learning
- and how they judged this assessment data (criteria and explanation/justification)

Example of criteria:

	Developing	a hypothesis	
 Helpful questions: What do you expect to happen? Why does the occurance happen? Can you explain you hypothesis from what you have learnt? 	The student formulates presupposition, but is unable to explain the hypothesis	The student formulates the presupposition and is able to explain the hypothesis with the helpful question	The student explains the hypothesis and supports it with scientific facts
Planning the investigation			
 Helpful questions: How can the experiment be implemented? Which physical variable should be studied? How can connection be found between variables? What can you do in order to accurately fix the measurements? More exact questions in teacher support. 	The student gives recomendations on how the experiment should be carried out, but is unable to proceed and does not understand the process.	The student gives recomendations on how the experiment should be carried out and understands the process, but is unable to proceed.	The student gives recomendations on how the experiment should be carried out and understands the process, can proceed with the planing of the experiment.

Case study on Wood lice: Skill: Developing hypothesis, Level 1

Choosing your variable:

Variables: There are many variables that could affect the life of a woodlouse. Suggested variables for you to investigate are:

- Intensity of light
- Amount of moisture
- Food preferences

Discuss these variables in your group and decide which one you would like to investigate. Write your choice below.

A

Which variable have you decided to investigate?

Intensity of Light

Formulating your hypothesis:

Now you have decided which variable you would like to investigate, use the space below to explain the question(s) you are trying to answer (or the problem(s) you are trying to solve).

Questions to be answered:

	•••••	
Durk		
Boom Light		
Intense 'Light		
+n.e		

<u>Predictions</u>: Use any scientific knowledge you already have, answer the following questions. Try and be as <u>clear</u> as you can in your answers.

What do you think will happen?

will			anoy	
			Comple	5e
<u>es</u> s		·····		
ink this will happe	m?			
e the gents		-	an	
	He ge ess ink this will happe e. <u>He</u>	He (n/to gp to ess	He Intonse ge to He ess ink this will happen? e Hey arrit	He Intense Light ge to the complet ess

The student formulated a prediction about what would happen within their light intensity experiment. However, when they attempted to explain why they thought this would happen, their answer showed no relevant connection to their prediction.

Case study on Wood lice Skill: Developing hypothesis, Level 2

Formulating your hypothesis:

Now you have decided which variable you would like to investigate, use the space below to explain the question(s) you are trying to answer (or the problem(s) you are trying to solve).

Questions to be answered:

What intensity of light do woodlike
prefer?
what effects does the intensity
of light have an modulice?

What do you think will happen?
The module will move towards
the do-kest area
Bright Light may and them
out and burn them. They may
move towards the light source
but should two and
Why do you think this will happen?
wadice prefer darkness it
we what see the places
Jan Sind Here in contract of
Woodice live in damp areas
and prefer moisture. Light/
heat will effect from

Predictions: Use any scientific knowledge you already have, answer the following questions.

Try and be as clear as you can in your answers.

The student made their prediction about what would happen during the experiment, and explained why they believed this would happen based on their experiences with woodlice.

Case study on Wood lice, Skill: Developing hypothesis, Level 3

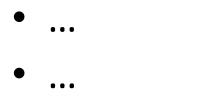
Formulating your hypothesis:

Now you have decided which variable you would like to investigate, use the space below to explain the *question(s)* you are trying to answer (or the problem(s) you are trying to solve).

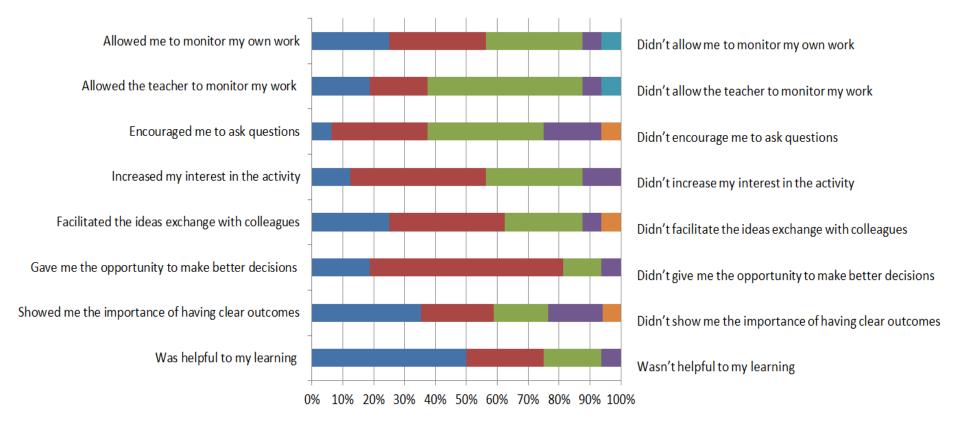
Questions to be answered:

<u>Predictions</u>: Use any scientific knowledge you already have, answer the following questions. Try and be as <u>clear</u> as you can in your answers.

do you think will happen? Ward Duca cod-aid

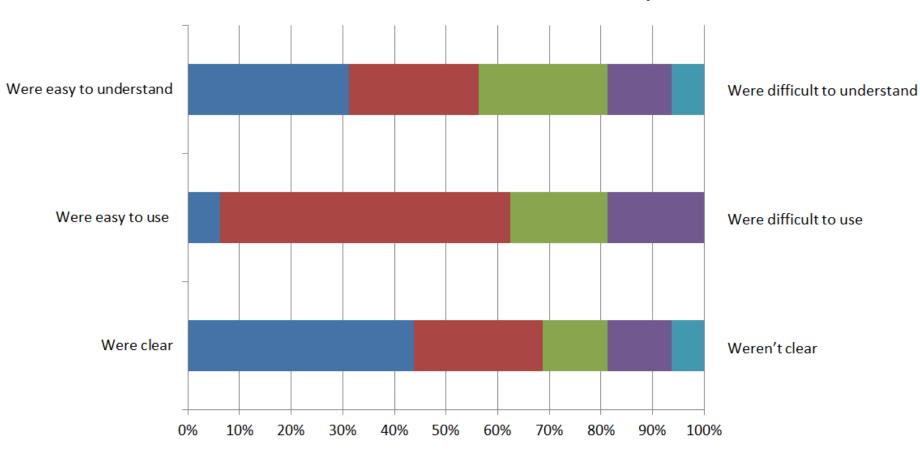

Why do you think this will happen?

like the cost ing wood, they might go to the field wood because it is now dead because it isn't atached to the tree anymore. They won't go for tanana the breact because they are still freeh. as it isn't a comon food of the undergrowth. I think the cool aid will be over looked.


This student made a detailed prediction and explained why they believed this would happen using their scientific content knowledge (indicating differences in different types of wood, and that woodlice are decomposers.

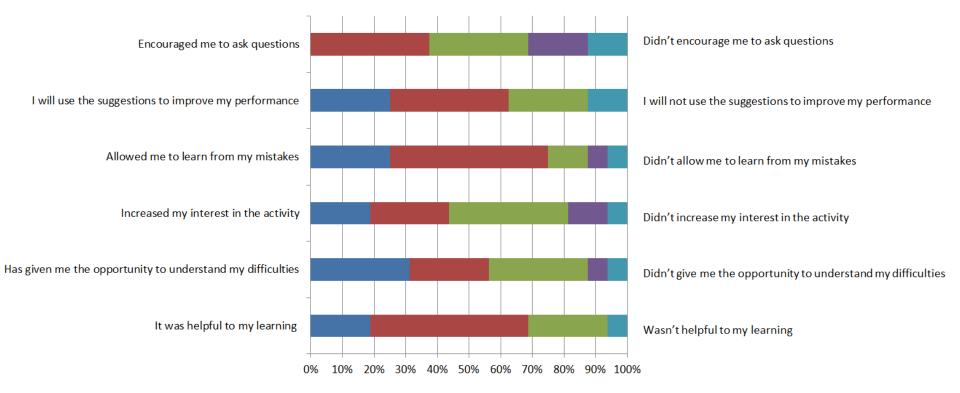
Forms of evidence

- Student worksheets/reports
- Student dialogue
- Teacher observations
- Classroom videos
- Diagnostic questioning
- Student presentations


Students Opinions regarding assessment process (1)

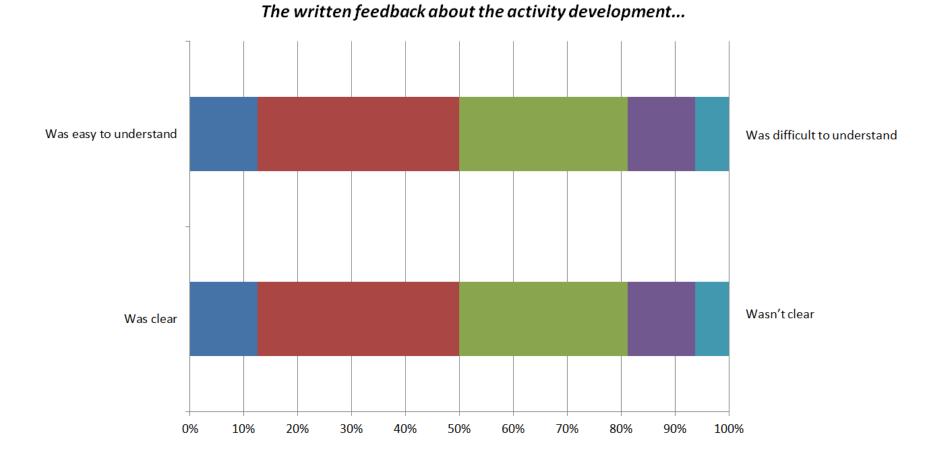
Knowing the assessment criteria regarding this activity ...

■1 ■2 ■3 ■4 ■5 ■NA


Students Opinions regarding assessment process (2)

The assessment criteria used in the activity...

■1 ■2 ■3 ■4 ■5 ■NA


Students Opinions regarding assessment process (3)

The written feedback about the activity development and my performance...

Students Opinions regarding assessment process (4)

■1 ■2 ■3 ■4 ■5 ■NA

e.g. Unit - Electricity

Teacher feedback - electricity unit

• Dorota, lower secondary school:

"I was inspired by this unit and assessment tools designed for this activity. It was quite new for pupils who are not used for this kind of activities and assessment. I think they need more training in this field."

- Vierka, lower secondary school:
- "The proposed assessment tools evaluate pupils' abilities in different aspects of inquiry well and it helped me to reveal problematic areas of pupils abilities like to plan and express the investigation procedure, interpretation skills, on the other hand I was surprised by the activity and creativity of some pupils that have usually poor results."
- "I was really amazed by this activity and so were the pupils and I would like to have more activities like this with detail description materials for teachers and pupils available."

SAILS Teacher Education Programmes

- Experience inquiry themselves
- Implement-trial in classroom
- Develop inquiry lessons
- Evaluate resources
- Experience assessment in action
- Assess student work
- Develop assessment criteria
- Techniques for classroom management
- Variety of assessment practices

Conclusions- Success in IBSE

The **success** of the **education reform** movement requires many elements to be taken into account, such like improvements in:

- curricula and student assessment,
- in-service and pre-service teacher training,
- appropriate instructional materials for teachers,
- positive atmosphere towards these trends at school, etc.

Getting Involved

 SAILS Community of Practice (CoP) – connecting practitioners in assessing inquiry. sails-project.eu/portal/cop

 SAILS/SMEC Conference, 24th-25th June 2014, Dublin City University – bringing together teachers, educators, researchers and policy makers –

"Thinking Assessment in STEM Education"

www.dcu.ie/smec

DCU Team: Dr. Odilla Finlayson, Dr. Eilish McLoughlin, Dr. Paul van Kampen, Dr. Deirdre McCabe, Dr. Sarah Brady

The SAILS Project has received funding from the European Union's Seventh Framework Programme

